
Week 1; Lecture 1

Introduction to Programming

Week 1 2

Class

● Lecture will introduce new concepts

● Tutorials will give you a chance to make sure
you know the answers to the questions

● Labs will teach to to program

– One learns programming only by programming
● We can tell you things, but the words only have

meaning when you program

Week 1 3

Materials

● For this class you will need

1) Access to a computer

2) A pen drive

● Acquire these materials as soon as possible.

Week 1 4

Lectures and Tutorial

● Each week, you will get a list of questions,
which are answered in the lecture.

● During tutorial, you will have the opportunity to
check your answers

– Turn in your answers at the end of the tutorial

– Answer quality determines your tutorial score

● The objective section of the test will comprise a
selection of the tutorial questions

Week 1 5

Lab

● The lab is where you learn programming

● During the lab you will work on your program

– You will probably have to work outside of class as well

– A laptop will help you move programs to and from home.

– The pen drive will let you store your programs in a safe
place.

● The essay part of the tests will ask that you write
portions of the code you write during the lab.

Week 1 6

Programing

● A program is a description of behavior such as

– A recipe

– Instructions to assemble furniture

● A computer program is a description of a computer's behavior
such as

– Sending email

– Executing a game

● The goals of this class are

– To teach you to write programs

– To teach you how to learn to program

Week 1 7

Failure teaches Programming
(and everything else)

● If you are not failing, you are not learning.

● Efficient learning is efficient failure. To wit:

– Fail early: Try your best guess. It is probably wrong,
but you will learn something if it is.

– Fail often: The more you try, the more you learn.

– Fail safely: Contain your failure so they don't break
anything else. Try small changes.

– Fail forward: Try to avoid repeating mistakes.
Remember your failures.

Week 1 8

Test Driven Development

1) Write a test

2) Run all tests to make sure the old ones pass
and the new one fails

3) Write the smallest program that make the test
pass

4) Run all test to make sure that all tests pass

5) Refactor

Week 1 9

Why Test Driven Development

● Test Driven Development formalizes learning by failure.

– Writing a test reminds you of your goal.
● It is surprisingly easy to forget when face multiple failures

– Making sure if fails tests the test.
● If it succeeds before the code, it does not test the code

– Writing the code is trying.
● It will probably fail a few times. (That's good.)

– Seeing the test succeed shows you have learned
● You have written it down in the test and the code

Week 1 10

1. Write a test

● Story: As a user, I want to move Scratch forward 250 pixels so I
can see how to do it.

● Example: Scratch moves forward 250 pixels

● Test:

1) Note Scratch's position

2) Hit the green flag

3) See: Scratch move forward 250 pixels

● What is the difference between the example and the test?

● Can testing tell your if a program is correct?

Week 1 11

2. Run the Failing Test

● We hit the green flag. Scratch does not move.

– So far there is only one test: see Scratch move.

Week 1 12

3. Write the program

● Event: When green flag clicked

● Statement: Move 250 steps

Week 1 13

4. Run a successful test

● Scratch moves

● 250 pixels

Week 1 14

5. Refactor

● Refactoring changes the description of behavior
without changing the behavior.

● Refactoring makes the program
comprehensible to another programming.

● No need to refactor a two line program

● How many descriptions of the same behavior
are there?

Week 1 15

Test Every Line

● Each time you write line of code:

1.Think: “What will the program do when the line
works?”

2.Write the line of code.

3.Compile the line of code. Does it compile?

4.Run the line of code. Does it do what you expected?

5.Make it as clear as possible.

Week 1 16

Why test every line of code

● If you get a compiler error, you know what to fix.

● If you get a run time error, you know what to fix.

● Each additional line of code you write doubles
to difficulty of finding errors.

Week 1 17

Programming Languages

● High-level languages such as Scratch and C
are written for people

● Computers do not understand high-level
languages; they only understand machine code

● We write programs in high-level languages for
other people. Often ourselves.

Week 1 18

Why Unix

● Unix is a family of Operating System

– Includes: OSX, iOS, Android, Linux

– Alternative to Microsoft Windows

● We use Ubuntu Linux

– Freely available—you can put it on your laptop

– Comes with many programming tools

● More open than Windows

– You can look at the code, which is written in C

– Common in the Academy and Research

Week 1 19

Login

● Select username

● Enter password

Week 1 20

Ubuntu Linux Desktop

● Launcher

– Terminal

– Scratch

– Eclipse

● Terminal

Week 1 21

Terminal
● Prompt

● Command

● Argument

● Result

Week 1 22

ScratchBehavior Actions Program

Week 1 23

Statements

● Simple Statements

● Events

● Control

● Expressions

{

Week 1 24

Simple Statements: Motion

● Lets you move the sprite

● You can type numbers into the
white areas

● You can select from the drop down
menus

Week 1 25

Simple Statements: Looks

● Lets you change the appearance of
the stage and the sprite

Week 1 26

Simple Statements: Sound

● Lets you play sounds

Week 1 27

Simple Statements: Pen

● Lets you play draw on the stage

Week 1 28

Events: Starting Programs

● Starts programs

● Events are actions that occur
outside the program.

● Programs can generate events
using “broadcast”

– Broadcast is an asynchronous
event

– Broadcast and wait is a
synchronous event

Week 1 29

Expressions: Testing and
Calculating

● Perform calculations

● Arithmetic expressions calculate
numbers

– e.g. 1 + 2, 3* 4

● Boolean expressions evaluate to
true or false

– e.g. 1 < 2, 5 = 6

– e.g. 1 < 2 or 5 = 6

Week 1 30

Control: Choosing next action

● Selection and Iteration

● Selection (if) chooses between
one of two actions

● Iteration (repeat and forever)
repeat actions

– Repeat n times

– Repeat until

Week 1 31

Draw a Square 1

● Reset

● Draw a line

● Turn 90 degrees

● Draw and turn three more
times

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

