
Week 2 Lecture 3

Unix

Week 2 2

Terminal and Shell

Week 2 3

Terminal
• Prompt
• Command

• Argument

• Result

Week 2 4

Shell Intro

• A system program that allows a user to execute:
– shell functions (e.g., ls -la)

– other programs (e.g., eclipse)

– shell scripts

• Linux/UNIX has a bunch of shell programs

– We will use bash

Week 2 5

Typing in bash

• Left and right arrows move left and right

• Backspace and delete characters

• Ctrl-a: beginning of line; Ctrl-e: end of line

• <Tab> completes file names
– Always use <Tab> when typing file or

command names to minimize misspelling

Week 2 6

Command Format
• Format: command and 0 or more arguments:
% commandname [arg1] ... [argN]

• % sign represents prompt here and hereafter.

• Arguments can be
– options (switches to the command to indicate a

mode of operation) ; usually prefixed with a
hyphen (-) or two (--) in GNU style

– non-options, or operands, basically the data to work
with (actual data, or a file name)

Week 2 7

Command Types

• Shell functions: The shell executes the commands when
the enter key is hit, and prints results onto the terminal.

• Other programs: The shell executes the compiled program.

• Shell scripts: Programs consisting of shell functions, other
programs and shell scripts.

Week 2 8

exit

• Exit from your terminal session.
– % exit
– Ctrl-d
– Close the window by clicking on the 'x'

Week 2 9

Files

Week 2 10

Files and directories

• Unix provides files and directories.

• A directory contains files and other directories.

• The directories and files are called the file system.

• The directory that contains all other directories is called
the “root” directory, whose name is written “/”.

Week 2 11

Example
• Every file has a name (root's name is written /

• Every directory has two paths
– Absolute paths start with the root

– Relative paths start from the current directory

larry

home (/home)dev (/dev)bin (/bin)

nat (/home/nat or ~)

adobe-air.sh
(/home/nat/adobe-air.sh)

classes
(/home/nat/classes)

DirectoryDirectory
structurestructure

Week 2 12

Permissions

• Every file and directory have a set of permission for:
– Self: what the file owner can do

– Group: what the file's group can do

– All: what everyone can do

• Each set of permission has three settings
– Read: the person or group can read the file

– Write: the person or group can write the file

– Execute: the person or group can execute the file

Week 2 13

Permission example

• Directory

• Self: read write execute permissions

• Group: read write execute permissions

• All: read execute permissions

• Owner is “nat”

• Group is “nat”

• Last touched on May 28 9:29 AM

• Directory name is “sp”

drwxrwxr-x 17 nat nat 4096 May 28 09:29 sp

Week 2 14

Wild Cards

• You can refer to files and directories using
the wild cards: * and ?.
– * matches any string of characters

• a*z matches abz, abbz, abcdez, and azzz but not
abcza

• az* matches azzz, aza but not abz

– ? matches a single character
• a?z matches abz, and acz, but not abbz, or abza

Week 2 15

Execute Permission

• Files: execute means the file is a command

• Directories: execute means the user can see
the contents

Week 2 16

File Commands

Week 2 17

Print Working Directory: pwd

• Prompt
– Me

– Computer

– Directory

• Command: pwd

• Current directory

• Next Prompt

Week 2 18

Directory contents: ls

• Prompt
– Me

– Computer

– Directory

• Command: ls

• Directory contents

• Next Prompt

Week 2 19

ls

• List directory contents

• Has whole bunch of
options, see man ls for
details.

• % ls
– all files except those

starting with a “.”

• % ls -a
– all

• % ls -A
– all without “.” and “..”

• % ls -F
– append “/” to dirs and “*”

to executables

• % ls -l
– long format

• % ls -al
• % ls -lt

– sort by modification time
(latest - earliest)

• % ls -ltr
– reverse

Week 2 20

Finding Permission: ls -l

• The -l parameter
displays
permissions

Week 2 21

Seeing hidden files: ls -a

• The -a parameter
display files that
start with a '.'

• '.' is the name of the
current directory

• '..' is the name of
the parent directory

Week 2 22

cat

• Display and concatenate files.
• % cat

– Will read from STDIN and print to STDOT every line you enter.

• % cat file1 [file2] ...
– Will concatenate all files in one and print them to STDOUT

• % cat > filename
– Will take whatever you type from STDIN and will put it into the

file filename

• To exit cat or cat > filename type Ctrl+D to
indicate EOF (End of File).

Week 2 23

more / less

• Pagers to display contents of large files
page by page or scroll line by line up and
down.

• Have a lot of viewing options and search
capability.

• Interactive. To exit: ‘q’

Week 2 24

less
• less ("less is more") smarter than the more command
• to display contents of a file:

– % less filename

• To display line numbers:
– % less -N filename

• To display a prompt:
– % less -P"Press 'q' to quit" filename

• Combine the two:
– % less -NP"Blah-blah-blah" filename

• For more information:
– % man less

Week 2 25

touch

• By touching a file you either create it if it
did not exists (with 0 length).

• Or you update it’s last modification and
access times.

• There are options to override the default
behavior.

• % touch file
• % man touch

Week 2 26

cp

• Copies files / directories.
• % cp [options] <source> <destination>
• % cp file1 file2
• % cp file1 [file2] … /directory

• Useful option:

– -i to prevent overwriting existing files and prompt
the user to confirm.

– -r to copy a directory and all of its contents

Week 2 27

mv

• Moves or renames files/directories.
• % mv <source> <destination>

– The <source> gets removed

• % mv file1 dir/
• % mv file1 file2

– rename

• % mv file1 file2 dir/
• % mv dir1 dir2

Week 2 28

rm

• Removes file(s) and/or directories.
• % rm file1 [file2] ...
• % rm -r dir1 [dir2] ...
• % rm -r file1 dir1 dir2 file4 …

– -r option removes directory and all of its
contents

Week 2 29

mkdir

• Creates a directory.
• % mkdir newdir
• Often people make an alias of md for it.

Week 2 30

cd

• Changes your current directory to a new
one.

• % cd /some/other/dir
– Absolute path

• % cd subdir
– Assuming subdir is in the current directory.

• % cd
– Returns you to your home directory.

Week 2 31

rmdir

• Removes a directory.
• % rmdir dirname
• Almost equivalent:

– % rm -r dirname
• rmdir will complain if the file isn't empty

• rm -r will not.

Week 2 32

ln

• Symbolic link or a “shortcut”.
• % ln –s <real-name> <fake-name>

Week 2 33

chmod

• Changes file permissions
• Possible invocations

– % chmod 600 filename

• -rw------- 1 user group 2785 Feb 8 14:18 filename
– % chmod u+rw filename

• the same thing, more readable
– For the assignment:

• % chmod u+x myshellscript
(mysshellscript is now executable)

• -rwx------ 1 user group 2785 Feb 8 14:18 myshellscript

Week 2 34

Why does 600 = rw-?

• Permissions are represented as an octal number (i.e., 3 bits)
– r: 4

– w: 2

– x: 1

• 600 is self rw or 4+2, 0, 0

• 755 is rwxr-xr-x or 4+2+1, 4+0+1, 4+0+1
– Common directory permissions

• 644 is rw-r—r-- or 4+2, 4, 4
– Common file permissions

	UNIX Commands
	Slide 2
	Slide 3
	Shell Intro
	Slide 5
	Command Format
	Shell I/O
	exit / logout
	Files
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	ls
	Slide 20
	Slide 21
	cat
	more / less
	less
	touch
	cp
	mv
	rm
	mkdir
	cd
	rmdir
	ln
	chmod
	Slide 34

