
Week 3 Lecture 2

Types Constants and Variables
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Types

• Computers store bits: strings of 0s and 1s

• Types define how bits are interpreted
– They can be integers (whole numbers): 1, 2, 3

– They can be characters 'a', '?', '_'

– They can be real numbers: 1.5, 3.2453

– They can be strings “Hello World”

• In every case they are strings of bits.
– Scratch figures out what the bits mean by what you do

with them
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Types in C

• In C you must tell the compiler how to
interpret the bits

• There are two kinds of types:
– Simple types, which are defined by the

hardware
– Complex types, which are define by the

language
• Complex types are collections of simple types
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Simple Types

• There are three basic simple types: int,
char, float
– Int: an integer

• E.g., 1, 2, 3

– Char: a character
• E.g., 'a', '/', '_'

– Float: a real number
• E.g., 1.5, 2.354
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Types: Size and Range
Name Description Size* Range*

char Character or small
integer

1 byte signed: -128 to 127
unsigned: 0 to 255 

short int
(short)

Short integer 2 bytes signed: -32768 to 32767
unsigned: 0 to 65535 

int Integer 4 bytes signed: -2147483648 to 2147483647
unsigned: 0 to 4294967295 

long int
(long)

Long integer 4 bytes signed: -2147483648 to 2147483647
unsigned: 0 to 4294967295

float Floating point number 4 bytes 3.4e +/- 38 (7 digits) 

double Double precision
floating point number

8 bytes 1.7e +/- 308 (15 digits) 

long double Long double precision
floating point number

8 bytes 1.7e +/- 308 (15 digits) 
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Fixed point number

• Binary number
• Sign bit

– Two's compliment

• Limited numbers
– [-214748646, 214748647]
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Floating Point Numbers

• Represents fractions

• Represents large and small numbers

• Have limited precision
– 23 bits of significand 

• up to about 8 decimal digits

– 8 bits of exponent
• About plus or minus: 2256

– 115792089237316195423570985008687907853269984665640564039
457584007913129639936

– 1 sign bit
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Characters and Strings

• Characters are 8 bit values interpreted as
ASCII.

• Strings a sequences and char's terminated
by the null character '/0'.
– Strings are complex data types. Their length

cannot be specified in the standard.
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Constants

• Constants are representations of value of certain types.
– Int constant: 123

• Comprised entirely of digits

– Float constant: 1.234
• Includes a period, but otherwise only digits

– Char constant: 'a'
• A single character, surrounded by single quotes

– String constant: “Hello world”
• Zero or more characters surrounded by double quotes
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Variables

• Variables are named memory locations of a
size that can hold values of a certain type.
– Int variable: int counter;
– Float variable: float average;
– Char variable: char operator;
– String variable: char message[80];

• The [80] indicates that this string is 79 characters or
less.
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Rules for Constructing Variables Names

• A variable name is any combination of letters, digits and
underscores

• The first character must be an letter or an underscore (system
variable).

• No commas and blanks are allowed within a variable name.
• Case matters!
• C keywords cannot be be used as variable names.
• Examples:

present, hello, y2x3, r2d3, ... /* OK */

_1993_tar_return /* system var */

Hello#there /* illegal: # */

double /* keyword */

2fartogo /* illegal: 2 */
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Keywords

• Keywords, or reserved words, are defined
by C
– They cannot be used as variable names

• There are 32:
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Initialization

• Always initialize variables with constants.
– Int variable: int counter = -1;
– Float variable: float average = -1.0;
– Char variable: char operator = 'x';
– String variable:

• char message[80] = “Initialization”;
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Initialization Tips

• If possible, initialize to a value that doesn't make
sense so you know when you are seeing the initial
value.
– When initializing a string “initialization value” is a good

choice.
• On the other hand, sometimes you want to initialize to a

default value

– If a numeric results is supposed to be positive -1 or -1.1
is a good choice.

– A character you do not expect is a good choice.
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Compound types

• Arrays: all elements are the same size.
– e.g. int array[5]

• An array containing 5 integers.

– To use: array[0] = 5;

• Structs: elements may have different sizes
– e.g. struct circle {int x, y; float radius}

• A circle has two ints called x and y and a single float called radius.

– To use: circle.x = 5;
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Strings are arrays.

• E.g. char *Name = “Nat”;
– Name[0] == 'N'

– Name[1] = 'a'

– Name[2] = 't'

– Name[3] = '\0'
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Arrays are pointers

• e.g. char* Name = “Nat”
– Name == &Name[0]
– *Name == Name[0] == 'N'
– &Name[1] == Name + sizeof(char)
– &Name[2] == Name + (2 * sizeof(char))
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Array initialization

• Arrays can be initialized.
– e.g. int data[5] = {2, 5, 3, 7, 1}
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Structs are pointers

• e.g. struct circle {int x, y; float radius} 
– &circle.x == circle
– circle.x == *circle
– &circle.y == circle + sizeof(int)
– &circle.radius == circle + (2 *sizeof(int))
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Define new types with typedef

• Type definition
common with struct

• Define a circle type
– Ints x and y

– Float radius

• Allocates memory for
each of the elements.
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Struct initialization

• Structs can be initialized.

• Easiest with defined type
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Kinds of variables

• Local variable: defined in the current block
of code.

• Global variable: defined through the
program.

• Static variable: allocated memory survives
though program life.

• External variable: variable is defined in
another file.
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Scope and Lifetime

• Scope defines where a variable can be used
– Local variable: used only in block.

– Global variable: used anywhere in program.

• Lifetime defines how long a variable exists.
– Local variables: usually deleted when not

accessible

– Static variables: exists until program ends.
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Scope example

• Global variable
– Can be used anywhere in

program.

– Avoid
• Difficult to find where it

changes

• Local variable
– Can only be used in

current block.
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