
Week 3 Lecture 2

Types Constants and Variables



Week 3 2

Types

• Computers store bits: strings of 0s and 1s

• Types define how bits are interpreted
– They can be integers (whole numbers): 1, 2, 3

– They can be characters 'a', '?', '_'

– They can be real numbers: 1.5, 3.2453

– They can be strings “Hello World”

• In every case they are strings of bits.
– Scratch figures out what the bits mean by what you do

with them



Week 3 3

Types in C

• In C you must tell the compiler how to
interpret the bits

• There are two kinds of types:
– Simple types, which are defined by the

hardware
– Complex types, which are define by the

language
• Complex types are collections of simple types



Week 3 4

Simple Types

• There are three basic simple types: int,
char, float
– Int: an integer

• E.g., 1, 2, 3

– Char: a character
• E.g., 'a', '/', '_'

– Float: a real number
• E.g., 1.5, 2.354



Week 3 5

Types: Size and Range
Name Description Size* Range*

char Character or small
integer

1 byte signed: -128 to 127
unsigned: 0 to 255 

short int
(short)

Short integer 2 bytes signed: -32768 to 32767
unsigned: 0 to 65535 

int Integer 4 bytes signed: -2147483648 to 2147483647
unsigned: 0 to 4294967295 

long int
(long)

Long integer 4 bytes signed: -2147483648 to 2147483647
unsigned: 0 to 4294967295

float Floating point number 4 bytes 3.4e +/- 38 (7 digits) 

double Double precision
floating point number

8 bytes 1.7e +/- 308 (15 digits) 

long double Long double precision
floating point number

8 bytes 1.7e +/- 308 (15 digits) 



Week 3 6

Fixed point number

• Binary number
• Sign bit

– Two's compliment

• Limited numbers
– [-214748646, 214748647]



Week 3 7

Floating Point Numbers

• Represents fractions

• Represents large and small numbers

• Have limited precision
– 23 bits of significand 

• up to about 8 decimal digits

– 8 bits of exponent
• About plus or minus: 2256

– 115792089237316195423570985008687907853269984665640564039
457584007913129639936

– 1 sign bit



Week 3 8

Characters and Strings

• Characters are 8 bit values interpreted as
ASCII.

• Strings a sequences and char's terminated
by the null character '/0'.
– Strings are complex data types. Their length

cannot be specified in the standard.



Week 3 9

Constants

• Constants are representations of value of certain types.
– Int constant: 123

• Comprised entirely of digits

– Float constant: 1.234
• Includes a period, but otherwise only digits

– Char constant: 'a'
• A single character, surrounded by single quotes

– String constant: “Hello world”
• Zero or more characters surrounded by double quotes



Week 3 10

Variables

• Variables are named memory locations of a
size that can hold values of a certain type.
– Int variable: int counter;
– Float variable: float average;
– Char variable: char operator;
– String variable: char message[80];

• The [80] indicates that this string is 79 characters or
less.



Week 3 11

Rules for Constructing Variables Names

• A variable name is any combination of letters, digits and
underscores

• The first character must be an letter or an underscore (system
variable).

• No commas and blanks are allowed within a variable name.
• Case matters!
• C keywords cannot be be used as variable names.
• Examples:

present, hello, y2x3, r2d3, ... /* OK */

_1993_tar_return /* system var */

Hello#there /* illegal: # */

double /* keyword */

2fartogo /* illegal: 2 */

M
a

n
a

v
 R

ac
h

n
a

 C
o

lle
g

e
 o

f E
n

g
g.



Week 3 12

Keywords

• Keywords, or reserved words, are defined
by C
– They cannot be used as variable names

• There are 32:



Week 3 13

Initialization

• Always initialize variables with constants.
– Int variable: int counter = -1;
– Float variable: float average = -1.0;
– Char variable: char operator = 'x';
– String variable:

• char message[80] = “Initialization”;



Week 3 14

Initialization Tips

• If possible, initialize to a value that doesn't make
sense so you know when you are seeing the initial
value.
– When initializing a string “initialization value” is a good

choice.
• On the other hand, sometimes you want to initialize to a

default value

– If a numeric results is supposed to be positive -1 or -1.1
is a good choice.

– A character you do not expect is a good choice.



Week 3 15

Compound types

• Arrays: all elements are the same size.
– e.g. int array[5]

• An array containing 5 integers.

– To use: array[0] = 5;

• Structs: elements may have different sizes
– e.g. struct circle {int x, y; float radius}

• A circle has two ints called x and y and a single float called radius.

– To use: circle.x = 5;



Week 3 16

Strings are arrays.

• E.g. char *Name = “Nat”;
– Name[0] == 'N'

– Name[1] = 'a'

– Name[2] = 't'

– Name[3] = '\0'



Week 3 17

Arrays are pointers

• e.g. char* Name = “Nat”
– Name == &Name[0]
– *Name == Name[0] == 'N'
– &Name[1] == Name + sizeof(char)
– &Name[2] == Name + (2 * sizeof(char))



Week 3 18

Array initialization

• Arrays can be initialized.
– e.g. int data[5] = {2, 5, 3, 7, 1}



Week 3 19

Structs are pointers

• e.g. struct circle {int x, y; float radius} 
– &circle.x == circle
– circle.x == *circle
– &circle.y == circle + sizeof(int)
– &circle.radius == circle + (2 *sizeof(int))



Week 3 20

Define new types with typedef

• Type definition
common with struct

• Define a circle type
– Ints x and y

– Float radius

• Allocates memory for
each of the elements.



Week 3 21

Struct initialization

• Structs can be initialized.

• Easiest with defined type



Week 3 22

Kinds of variables

• Local variable: defined in the current block
of code.

• Global variable: defined through the
program.

• Static variable: allocated memory survives
though program life.

• External variable: variable is defined in
another file.



Week 3 23

Scope and Lifetime

• Scope defines where a variable can be used
– Local variable: used only in block.

– Global variable: used anywhere in program.

• Lifetime defines how long a variable exists.
– Local variables: usually deleted when not

accessible

– Static variables: exists until program ends.



Week 3 24

Scope example

• Global variable
– Can be used anywhere in

program.

– Avoid
• Difficult to find where it

changes

• Local variable
– Can only be used in

current block.


	UNIX Commands
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Rules for Constructing Variables Names
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

