
Week 4 Lecture 1

Expressions and Functions

Week 4 2

Expressions

• A representation of a value
– Expressions have a type
– Expressions have a value

• Examples
– 1 + 2: type int; value 3

– 1.2 + 3: type float; value 4.2

Week 4 3

More expression examples

• If you declare two int variables:

int a = 1;
int b = 2;
– Expression with value 1: a
– Expression with value 2: a + 1
– Expression with value 6: 2 * (a + b)
– Expression with value 2: ++a
– Expression with value 1: a++

• Huh?

Week 4 4

Operators

• Expressions comprise operations with
variable or constants
– Examples

• 1 + 2

• 2 * (a + b)

• -1 + b

Week 4 5

Arithmetic Operators

• Assignment
– In C = does not mean “equals”

– It means put the value on the right in the
location on the left.

• Modulo (%)
– Int only

– %: remainder after int division

• Division (/)
– Int: the integer part of division

• e.g., 3/2 == 1

– Float: the closes float to the result of the
division (3.0/2 == 1.4)

From Wikipedia: Operators in C and C++

Week 4 6

Division and modulus

• Integer division

• Integer modulus

• Float division

Week 4 7

Increment and Decrement

Week 4 8

Assignment Operators

• The value on the left of
the '=' is treated as an
location

• The value on the right is
put in that location

Operat
or

Meaning

a = b Simple assignment

a += b a = a + b

a -= b a = a – b

a *= b a = a * b

a /= b a = a / b

a %= b a = a % b

Week 4 9

Precedence
Precedence Operator Associativity

1 (highest) ++ (suffix)
– (suffix)
()
[]

Left-to-right

2 ++ (prefix)
– (prefix)
+ (unary)
- (unary)
!
(<type>)
* (value at)
& (address of)

Right-to-left

3 *
/
%

Left-to-right

4 +
-

Left-to-right

Week 4 10

Precedence
Precedence Operator Associativity

5 <
<=
>
>=

Left-to-right

6 ==
!=

Left-to-right

7 && Left-to-right

8 || Left-to-right

9 ?: Right-to-left

10 =
+=
-=
*=
/=
%=

Right-to-left

Week 4 11

Precedence Moral

• Always parenthesize your expressions.

Week 4 12

Function Declaration

• <type> <name>(<parameter_list>);
– E.g., int add(int a, int b);

• Declares a function called add that returns an int when passed two
ints.

• The first int passed will be called a inside the function; the second
will be called b.

– The compiler knows it is a function declaration by the type,
parentheses and semi-colon.

• Function declarations indicate the syntax of the function

• Functions must be declared before they are called.

Week 4 13

Function Definition

• <type> <name>(<parameters>) { }
– E.g., int add (int a, int b)

 {
 return a + b;
 }

• Defines the function to return the sum of its two parameters.

• Body: { return a + b }
– The compiler can tell it is a function definition by the type,

parentheses and curly brackets.

• Function definitions indicate what the function does.

Week 4 14

Function Call

• <name>(<parameters>);
– E.g., add(2, 3);
– Executes the body of the function.

– Compiler recognized a function call because it
has parentheses, but no type.

• A function call is an expression whose value
is the return value.

Week 4 15

Scope example 2

• Parameter

• Local

• Return value

Week 4 16

() Operator

• () is an operator.
– It is applied to an pointer.

– When you define a function, you define a name that points
to a location in memory that contains executable code.

– When you call a function, you execute that code
• The value of the expression is the value the function returns.

– Style: the () operator goes immediately after the function
name [i.e., no space; e.g., func()]

Week 4 17

Functions are expressions

• This is important: function are like variables
– They can be used wherever variables are used
– Well almost: you cannot assign values to a

function
• But you can assign functions to functions.

• E.g., Expression using (badly named)
function f and g.
– (f() + 1) * 3) || g() == f()

– (f() * g()) + 3

Week 4 18

Expressions set function
parameters

• E.g., int f(int a, int b); int g(int a);
– f(1+2, 3*4)

– f(g(1+2), 5)

– f(g(1+2), g(3*4)

– g(f(1,2))

Week 4 19

Variable lifetime

• Local variables disappear when the function
returns.

• The keyword static gives the variable the
same lifetime as a global variable
– Can return strings.
– Can share information between functions calls.

Week 4 20

Static local variables (1)

Week 4 21

Static local variables (2)
We need to have the memory
allocated before we can give
it back to a calling function.

By declaring the local
variable static, the variable
continues to live after the
function is gone.

The variable is inaccessible
from main.

Week 4 22

Important: good names == clarity

Week 4 23

Clarity changes

• This program is clearer to an experienced
programmer.
– It has less code and it easy to see that it does

what it says.

Week 4 24

Read Programs

• You learn to write English by reading
English

• You learn to write Hindi by reading Hindi

• You learn to write C by reading C.
– You learn to write good C by reading good C.

– Look at Kernigan and Richie

– Look at the Linux kernel code

	UNIX Commands
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

