
Week 5 Lecture 1

Arrays



Week 5 2

Arrays

• Arrays are a sequence of identical data
items.
– e.g. int numbers[80];

• They are accessed through an integer index.
– e.g. number[5] = 35;

• String are an example of arrays.



Week 5 3

Array Syntax

• Declaration: <type> <name> [<int>]
– <type> is the kind of identical things stored

– <name> is the name of the things

– <int> is a constant int expression

• Access: <name>[<int expr>]
– <name> is the name of the array

– <int expr> is any int expression (e.g. constant, variable,
function …)

• [] is an operator.



Week 5 4

Arrays are pointers

• The name of the array is a pointer to the
beginning of the array.

• E.g., float a[3]: three floating point numbers
– *a is the same a a[0]

– *(a+1) is the same as a[1]

• When passing an array parameter, you can
use empty brackets to refer to the array
– Parameter float a[] is the same as float *a



Week 5 5

Example: Define Sum

• Array parameter: float numbers[]
– Need to know length of array: int length

• Add each element of the array to the total.

• Return total



Week 5 6

Call Sum

• Declare and initialize array
– float nums[3] = {1.2, 2.3, 3.4}

• Call function
– sum(nums, 3)



Printing an Array



Define print_array

• Array to print

• Length of array to print

• Open brace

• First length-l elements

• Last element with closing
brace and newline.



Call print_array

• Array with three elements

• Calling print_array

• Output:



Swapping two numbers



Define swap_indices

• Temporary variable

• Save one element

• Copy value

• Replace saved value



Call Swap_indices

• Show array

• Swap second and third items

• Show array

• Output:



Need a temporary variable

• When you move one variable to the other, the
value in the receiving variable is lost.

• You need to save the value of the variable you
overwrite before you move.

• You then move the temporarily saved value to the
variable from which you moved.

• Local variables are good temporary variables
because they vanish when the function ends.



Define swap_values

• Pass pointers
– Parameters go away after

the function returns

• Swap values pointed to



Call Swap_values

• Show array

• Pass address of value

• Show array

• Output:



Call Swap_values (alternative)

• Pass address of value
– Variable a is an address

– Adding 1 move the address forward one space

• Output:



Week 5 17

Sorting

• Conceptually simple; computationally hard.

• An array, a0 .. an, is sorted if for each ai, ai ≤ 
ai+1

• It is computationally difficulty because you
have to look at all pairs.
– Naive implementation are usually O(n2).



Week 5 18

Implementing Bubble Sort



Week 5 19

Bubble Sort is O(n2)

• For each pass through the array
– One needs to pass through most of the array.

• N passes through the array for n
comparisons → O(n2)



Week 5 20

Median



Week 5 21

Median

• The median is the number where half of the
data values are greater than the number and
half are lower.
– Given a sorted array, the median is just the

value in the middle of the array.

– If the array is even, it is the average of the two
middle values


	UNIX Commands
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

