
Week 5 Lecture 2

Functions and Recursion

Week 5 2

Function Declaration

• <type> <name>(<parameter_list>);
– E.g., int add(int a, int b);

• Declares a function called add that returns an int when passed two
ints.

• The first int passed will be called a inside the function; the second
will be called b.

– The compiler knows it is a function declaration by the type,
parentheses and semi-colon.

• Function declarations indicate the syntax of the function

• Functions must be declared before they are called.

Week 5 3

Function Definition

• <type> <name>(<parameters>) { }
– E.g., int add (int a, int b)

 {
 return a + b;
 }

• Defines the function to return the sum of its two parameters.

• Body: { return a + b }
– The compiler can tell it is a function definition by the type,

parentheses and curly brackets.

• Function definitions indicate what the function does.

Week 5 4

Function Call

• <name>(<parameters>);
– E.g., add(2, 3);
– Executes the body of the function.

– Compiler recognized a function call because it
has parentheses, but no type.

• A function call is an expression whose value
is the return value.

Week 5 5

Scope and Lifetime

• Scope: defines who can use a variable
– Local variables can only be used inside a

function

– Global variables can be used anywhere

• Lifetime: defines when a variable exists
– Local variables exist only while the function is

running (by default)

– Global variables exist as long as the program
runs

Week 5 6

Scope example

• Parameter

• Local

• Return value

Week 5 7

() Operator

• () is an operator.
– It is applied to an pointer.

– When you define a function, you define a name that points
to a location in memory that contains executable code.

– When you call a function, you execute that code
• The value of the expression is the value the function returns.

– Style: the () operator goes immediately after the function
name [i.e., no space; e.g., func()]

Week 5 8

Functions are expressions

• Functions are like variables
– They can be used wherever variables are used

– Well almost: you cannot assign values to a
function

• But you can assign functions to functions.

• E.g., Expression using (badly named)
function f and g.
– (f() + 1) * 3) || g() == f()

– (f() * g()) + 3

Week 5 9

Expressions set function
parameters

• E.g., int f(int a, int b); int g(int a);
– f(1+2, 3*4)

– f(g(1+2), 5)

– f(g(1+2), g(3*4)

– g(f(1,2))

Week 5 10

Variable lifetime

• Local variables disappear when the function
returns.

• The keyword static gives the variable the
same lifetime as a global variable
– Can return strings.
– Can share information between functions calls.

Week 5 11

Static local variables (1)

Week 5 12

Static local variables (2)
We need to have the memory
allocated before we can give
it back to a calling function.

By declaring the local
variable static, the variable
continues to live after the
function is gone.

The variable is inaccessible
from main.

Week 5 13

Important: good names == clarity

Week 5 14

Clarity changes

• This program is clearer to an experienced
programmer.
– It has less code and it easy to see that it does

what it says.

Week 5 15

Read Programs

• You learn to write English by reading
English

• You learn to write Hindi by reading Hindi

• You learn to write C by reading C.
– You learn to write good C by reading good C.

– Look at Kernigan and Richie

– Look at the Linux kernel code

Week 5 16

Recursion

• A function can use itself.

• Mathematical expression
– n! = 1 * 2 * 3 … * n = (n – 1)! * n

• By associativity

• Same fact in C
– factorial(n) = n * factorial(n – 1);

Week 5 17

Using the fact in c

• factorial(n) == factorial(n-1) * n

Week 5 18

Recursion v Iteration

Week 5 19

Why do we care

• It gives us a different way to reason about programs
– What is the base case: fact(1) = 1

– How do we reduce the size of the problem: fact(n) =
fact(n-1) * n

• Here similar to iteration
– Reducing from end instead of beginning.

• Efficient algorithms often result from reducing the
size from the middle. i.e., Divide and reconquer.
– This is much harder iteratively

Week 5 20

Divide and Conquer

• Factorial requires a step for each number
from one to n
– It takes n steps

• If we can divide it in half, each step covers
half the distance
– Takes log n steps

Week 5 21

Aside: Comments

• Comments do nothing active

• They are important because they allow you to keep
notes in a program.
– They can be invaluable in clarifying a program

• Two types of comments in C
– /* comment */

• May be multi-line

– // comment
• Extends only to end of line

Week 5 22

Value of comments

• Because high level languages are written for humans,
text that does nothing is very helpful

• Care must be taken with comments.
– If they provide no useful information, the clutter the code.

– Because they do nothing, then can mislead

– They must be updated whenever the code is updated

• Keeping active elements, such as variables and
functions informative can be more useful than
comments

Week 5 23

Value of comments

• Comments are useful when we have a
particularly tricky piece of code that cannot
be clarified by the function calls.

• They can also be useful to capture
assumptions made when doing a function.

	UNIX Commands
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

