
Week 5 Lecture 3

Compiler Errors
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Agile Development

• Backlog of stories defines projects
– Backlog contains all of the requirements currently known

• Stories define features of the project
– Three elements: feature user, user's task, user's goal

• Examples are associated with stories to clarify

• Tests are associate with stories to make sure the
feature works.
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Example Backlog Item

• Story: As a user, I want to swap two integers, so I
can try out a swap function.

• Example: I enter two numbers. The system displays
the two numbers and the variable that contains them.
When I hit return the system displays the variables
and their contents, which are reversed.

• Test:  I enter 1, then 2. The system displays “a=1; 2”
followed by “a=2; b=1”
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Story

• As a user, I want to swap two integers, so I
can try out a swap function.
– As a user: the user is a system user.

• For such simple example it is hard to be realistic.

– I want to swap two integers: the function is
supposed to swap two integers.

– so I can sort items: so I can try out a swap
function.
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Example

• I enter two numbers. The system displays the two numbers
and the variable that contains them. When I hit return the
system displays the variables and their contents, which are
reversed.
– For the programmer: clarifies the operation of the feature.

– For the systems engineer: helps focus attention on the operation
of the feature.

• Helps raise questions about how the operation should work.

– Frequently you will be both programmer and systems engineer.
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Test

• I enter 1, then 2. The system displays “a=1; 2” then
displays “a=2; b=1”.
– Specifies a series of steps:

• Create variables.

• Call functions on the two variables.

– Specifies an expected result
• The values of the variables are changed.

– Further clarifies the operation of the system for the
programmer and system engineer.
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Unit Test v System Test

• The tests associated with stories are system tests.
– Systems tests check from the user's point of view.

– They indicate that the system works properly.

• Unit tests are different
– Unit tests check from the programmer's point of view

– They indicate that invisible code works properly.

• Systems tests tell you whether the system works;
Unit tests tell you why it is not working.
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Algorithm

• Function
– Requires local

variable

– Local variable
holds value

– Local value
replaces lost value

Swap (a, b)

  Local variable temp;

  temp ← a;

  a ← b;

  b ← temp;
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Developing a new program

• List what needs to happen.

• Create empty files (or files copied from
elsewhere).

• Create Makefile.

• Create Test for first item.

• Run test to see it fail.

• Write code to make it succeed.



Week 5 10

What needs to happen

• Get input: two integers

• Swap variables containing the inputs

• Print the outputs to see that the swap took
place.
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1. Create empty files and test

• Make three empty files with “touch”
– main.c, swap.h swap.c

• Compile swap.c
– Flags: use  C 2011 standard, compile only, output swap.o

• Compile swap.o and main.c
– Flags: use C 2011standard, output swap,  

• Error: Main not defined
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2. Fix error: define main()

• Defined main
function

• Test

• Test passes
– In Unix nothing

means no errors
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3. Add 2 lines of code

• Compilation fails
– Missing semi-colon
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4. Fix and test main.c

• Succeeds
– In Unix no errors

means success

• Notice that we do not need to recompile
swap.c because we have not changed it.
– We only need to compile when we change file.
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5. Output values
• Print two ints, a and b, separated by comma: “%d, %d”

– printf(“%d, %d”, a, b)

• Error: missing <stdio.h>
– Contains definition of printf
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6. Fix compiler error

• Add:
– #include <stdio.h>

• Compiles

• Runs
– Because we added

output, we can see it.

• Newline needec
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7. Fix Runtime error

• Add newline '\n':

• Compiles

• Runs correctly
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8. Refactor: name the output func

• Naming the printf
makes it easier to
understand what it
does

• Also noticed that
main was not
returning a value
–  Added “return 0”
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9. Refactor: Move func to swap.c

• Compiles swap.c with -c flag

• Error compiling main.c
– Need header file swap.h to declare print_vars
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10. include swap.h in main.c

• File “swap.h”
– Function

declarations

• Included in main.c
– Just like stdio.h

• Now program
compiles and runs
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11. Makefile

• Lets us write scripts to compile our
programs
– Target “swap” needs swap.o and main.c.

– Target “swap.o” needs swap.c and swap.h

– Both compile appropriately

– Target “clean” removes file made 

• We use the make program to:
– Compile: “make” alone does first target

– Clean up: “make clean”
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Design for Testing

• The printf function can provide insight
while you test.
– Include printf statements to see what the

program does

• Output is easy to observe.
– Always write output routines first.
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11. Makefile

• Lets us write scripts to compile our
programs
– Target “swap” needs swap.o and main.c.

– Target “swap.o” needs swap.c and swap.h

– Both compile appropriately

– Target “clean” removes file made 

• We use the make program to:
– Compile: “make” alone does first target

– Clean up: “make clean”
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12. Swap first in main

• Uses standard algorithm

• We can use print_vars to see if
it works

• Compile and run
– Notice: make only compiles

swap; swap.o already exists
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13. Refactor swap(a, b) to swap.c

• Doesn't compile due to
typo
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14. Refactor: fix typo

• Doesn't compile because
swap not declared
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15. Refactor: add declaration

• Doesn't compiles but
doesn't work.
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16. Refactor: call by reference

• Compiles and works.
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17. Add input

• Compiles and works.

• Add to main.
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18. Refactor: move to function

• Compiles and works.



Week 5 31

Lesson

• Change as little as possible before
compiling

• Fix all errors and warnings before
compiling again

• Fix incorrect output before adding new
features
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