
Week 5 Lecture 3

Compiler Errors

Week 5 2

Agile Development

• Backlog of stories defines projects
– Backlog contains all of the requirements currently known

• Stories define features of the project
– Three elements: feature user, user's task, user's goal

• Examples are associated with stories to clarify

• Tests are associate with stories to make sure the
feature works.

Week 5 3

Example Backlog Item

• Story: As a user, I want to swap two integers, so I
can try out a swap function.

• Example: I enter two numbers. The system displays
the two numbers and the variable that contains them.
When I hit return the system displays the variables
and their contents, which are reversed.

• Test: I enter 1, then 2. The system displays “a=1; 2”
followed by “a=2; b=1”

Week 5 4

Story

• As a user, I want to swap two integers, so I
can try out a swap function.
– As a user: the user is a system user.

• For such simple example it is hard to be realistic.

– I want to swap two integers: the function is
supposed to swap two integers.

– so I can sort items: so I can try out a swap
function.

Week 5 5

Example

• I enter two numbers. The system displays the two numbers
and the variable that contains them. When I hit return the
system displays the variables and their contents, which are
reversed.
– For the programmer: clarifies the operation of the feature.

– For the systems engineer: helps focus attention on the operation
of the feature.

• Helps raise questions about how the operation should work.

– Frequently you will be both programmer and systems engineer.

Week 5 6

Test

• I enter 1, then 2. The system displays “a=1; 2” then
displays “a=2; b=1”.
– Specifies a series of steps:

• Create variables.

• Call functions on the two variables.

– Specifies an expected result
• The values of the variables are changed.

– Further clarifies the operation of the system for the
programmer and system engineer.

Week 5 7

Unit Test v System Test

• The tests associated with stories are system tests.
– Systems tests check from the user's point of view.

– They indicate that the system works properly.

• Unit tests are different
– Unit tests check from the programmer's point of view

– They indicate that invisible code works properly.

• Systems tests tell you whether the system works;
Unit tests tell you why it is not working.

Week 5 8

Algorithm

• Function
– Requires local

variable

– Local variable
holds value

– Local value
replaces lost value

Swap (a, b)

 Local variable temp;

 temp ← a;

 a ← b;

 b ← temp;

Week 5 9

Developing a new program

• List what needs to happen.

• Create empty files (or files copied from
elsewhere).

• Create Makefile.

• Create Test for first item.

• Run test to see it fail.

• Write code to make it succeed.

Week 5 10

What needs to happen

• Get input: two integers

• Swap variables containing the inputs

• Print the outputs to see that the swap took
place.

Week 5 11

1. Create empty files and test

• Make three empty files with “touch”
– main.c, swap.h swap.c

• Compile swap.c
– Flags: use C 2011 standard, compile only, output swap.o

• Compile swap.o and main.c
– Flags: use C 2011standard, output swap,

• Error: Main not defined

Week 5 12

2. Fix error: define main()

• Defined main
function

• Test

• Test passes
– In Unix nothing

means no errors

Week 5 13

3. Add 2 lines of code

• Compilation fails
– Missing semi-colon

Week 5 14

4. Fix and test main.c

• Succeeds
– In Unix no errors

means success

• Notice that we do not need to recompile
swap.c because we have not changed it.
– We only need to compile when we change file.

Week 5 15

5. Output values
• Print two ints, a and b, separated by comma: “%d, %d”

– printf(“%d, %d”, a, b)

• Error: missing <stdio.h>
– Contains definition of printf

Week 5 16

6. Fix compiler error

• Add:
– #include <stdio.h>

• Compiles

• Runs
– Because we added

output, we can see it.

• Newline needec

Week 5 17

7. Fix Runtime error

• Add newline '\n':

• Compiles

• Runs correctly

Week 5 18

8. Refactor: name the output func

• Naming the printf
makes it easier to
understand what it
does

• Also noticed that
main was not
returning a value
– Added “return 0”

Week 5 19

9. Refactor: Move func to swap.c

• Compiles swap.c with -c flag

• Error compiling main.c
– Need header file swap.h to declare print_vars

Week 5 20

10. include swap.h in main.c

• File “swap.h”
– Function

declarations

• Included in main.c
– Just like stdio.h

• Now program
compiles and runs

Week 5 21

11. Makefile

• Lets us write scripts to compile our
programs
– Target “swap” needs swap.o and main.c.

– Target “swap.o” needs swap.c and swap.h

– Both compile appropriately

– Target “clean” removes file made

• We use the make program to:
– Compile: “make” alone does first target

– Clean up: “make clean”

Week 5 22

Design for Testing

• The printf function can provide insight
while you test.
– Include printf statements to see what the

program does

• Output is easy to observe.
– Always write output routines first.

Week 5 23

11. Makefile

• Lets us write scripts to compile our
programs
– Target “swap” needs swap.o and main.c.

– Target “swap.o” needs swap.c and swap.h

– Both compile appropriately

– Target “clean” removes file made

• We use the make program to:
– Compile: “make” alone does first target

– Clean up: “make clean”

Week 5 24

12. Swap first in main

• Uses standard algorithm

• We can use print_vars to see if
it works

• Compile and run
– Notice: make only compiles

swap; swap.o already exists

Week 5 25

13. Refactor swap(a, b) to swap.c

• Doesn't compile due to
typo

Week 5 26

14. Refactor: fix typo

• Doesn't compile because
swap not declared

Week 5 27

15. Refactor: add declaration

• Doesn't compiles but
doesn't work.

Week 5 28

16. Refactor: call by reference

• Compiles and works.

Week 5 29

17. Add input

• Compiles and works.

• Add to main.

Week 5 30

18. Refactor: move to function

• Compiles and works.

Week 5 31

Lesson

• Change as little as possible before
compiling

• Fix all errors and warnings before
compiling again

• Fix incorrect output before adding new
features

	UNIX Commands
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

