
Week 6 Lecture 2

Greatest Common Divisor



Week 6 2

Additions to Calculator 

• Greatest Common Divisor
– Simple numerical algorithm



Week 6 3

Greatest Common Divisor (GCD)

• The Greatest Common Divisor (GCD) of
two numbers is the largest number that
divides both numbers evenly
– I.e. the division have a remainder of zero.

• If GCD(a, b) = x, then x is the largest
number where a mod x = 0 and b mod x =
0.



Week 6 4

Examples

• GCD(2, 3) = 1
– 2 and 3 are co-prime

• GCD(3, 9) = 3

• GCD(6, 9) = 3

• GCD(8, 12) = 4

• GCD(18, 12) = 6



Week 6 5

Analysis

• GCD(a, b) can be visualized as
the largest square that will fit in
an a x b rectangle.
– Since both sides of the square are

the same, the length of the side
divides both a and b evenly.



Week 6 6

Analysis (Euclid's Algorithm)

• Euclid's Algorithm uses the
observation that the what is left
over after subtracting the smaller
number from the large as many
times as possible, has the same
GCD as the two original numbers.
– i.e. GCD(a, b) = GCD(a, a mod b) as

long as (a mod b > 0)



Week 6 7

Euclid's Algorithm

• GCD(a, b)
– If (a = 0)

• Return b

– Return GCD(a mod b, a)



Week 6 8

Implementation



Week 6 9

How it works



Week 6 10

Tail Recursion

• Recursive call is last
– i.e., function does not use any of the values passed

in. 

• Tail recursion is easy to make iterative.
– Iterative function are more space efficient.

• They do not need to save the parameter values for each
call.



Week 6 11

Iterative GCD

• Complexity is swapping
– (a % b) < a

– (a % b) < b

• Let a = b % a, and let b = a
– After the first iteration, the smaller number will

be b
• Insure that the algorithm stops when the smaller

number is 0



Week 6 12

Euclid's Algorithm is fast

• Log(n) algorithm
– Finds the GCD in a time

that is the logarithm of
the size of the number.

– Designated O(log(n))



Week 6 13

Algorithmic Complexity

• Algorithmic complexity is the time it takes
an algorithm to compute a number.

• Computation complexity is usually
measured by O(f(n)), pronounce big-O of
“f” of “n”
– O(f(n)) represents the slowest growing function

of the input that is higher than the longest time
the algorithm takes.



Week 6 14

Examples

• Retrieval from an array is O(1)

• Binary search is O(log(n))

• Linear search is O(n)

• Merge Sort is O(nlog(n))

• Selection Sort is O(n2)

• Traveling Salesman is O(2n)

• Euclid's Algorithm is O(log n)



Week 6 15

Euclid's Algorith is O(log(n))

• (b % a) < a/2

• Each step input reduced by ½

• # steps grows by log2n


	UNIX Commands
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

