
Week 9 Lecture 1

Modules

Week 9 2

Moving into Team Work

• You will be building a database program
– It will read and write a database

• Team based development will help you
learn communications skills

• Today we discuss modular design and
development

Week 9 3

What is Modularity?

• Modules are pieces of a program that
interacts with the rest of the program in a
controlled fashion.

• From outside the module you can access
only selected functions and variable.

• The module provides a controlled interface.

Week 9 4

Functions are modules

• Functions provide an example of modularity
– The function declaration indicates the inputs

(parameters) and outputs (return value)

– What happens inside the function cannot be
affected from outside.

– E.g.: Bubble sort and Merge sort both take and
array and sort it, but they do it in different
ways.

Week 9 5

Compilation Units are Modules

• Compilation unit: .h + .c file
– e.g. calc.c + calc.h

• The .h file defines the controlled interface
– Only the functions in the .h file can be used

outside the module.

– Only the variables defined as external can be
used outside the module.

Week 9 6

Libraries are Modules

• Libraries provide a set of related functions
– Libraries may consist of multiple compilation

modules.

• How the functions interact is not visible
from outside the library.

• We simply use their behavior.

• We use a .h file to specify the syntax.

Week 9 7

Developing Modules

• What is the collection of functionality
provided by the module?

• What are the inputs to the module?
– Usually function calls

• What are the outputs to the module?
– Usually function returns

• What behavior is private to the module?
– Functions that cannot be called from outside

Week 9 8

Modules in C

• Header files (.h) specify which functions
can be used from outside the module.
– The specify the parameters and the return

values.

• Functions that are not specified in the
header files cannot be used outside the
module.

Week 9 9

Calculator Example

• In the calculator, we have only one module.
– The module is used by main to give the user

access to the calculator

– It is used by test to make sure that all of the
functions pass be basic tests.

• If we were going to develop it further we
might want to have multiple modules.
– e.g. int operations, floating point operations,

array operations ...

Week 9 10

Module Development

• Design
– Before programming, we sketch out the modules

– This helps us focus our work on parts of the program
without attending to all of it.

• Refactoring
– After programming, we revisit the modules to make

sure they make sense

– Will people coming after us understand how the
program fits together.

Week 9 11

Design

• We think in terms of things and actions
– E.g. Nouns and verbs

• First step in analysis is what are the things
in the program; what do they do

Week 9 12

Database: CRUD

• C: Create – Add a new record

• R: Read – Read a record

• U: Update – Update (or add) a record

• D: Delete – Delete a record

Week 9 13

Database Interface (1)

• int add(record);
• record find(index);
• int modify(record);
• int delete(index);

Week 9 14

Database Interface (2)

• db: sequence of student records
• record:

– s_no: unique number
– name: string
– grade: int

Week 9 15

Database Interface (3)

• int add(stu)
– Adds student_rec stu to database; returns 1

– If there is already one with s_no, returns 0

• stu find(s_no)
– returns the student record with serial number, s_no

– Returns error record if not found. (Cannot return 0)

• int modify(stu):
– alters the record with stu.sno to match the record passed.

– If there is no such record a new one is added to the database.

– Returns 0 on failure

• int delete(s_no)
– removes the record with s_no.

– Returns 0 on failure

	UNIX Commands
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

