
Week 9 1

Week 9 Lecture 2

ASCII Files



Week 9 2

Files in C



Week 9 3

Command I/O

• Remember
– The standard input is stdin
– The standard output is stdout
– Standard error is called stderr

• These are the default files you can read
from and write to

• You can redirect the input using < and >



Week 9 4

Using files in the program

• You can also name files in a program.

• To use a named file.
– Create a file pointer using fopen
– Read characters from the file pointer

– Close the file pointer when finished



Week 9 5

• Template: 
– FILE *fopen(char *filename, char *mode);

• The function fopen
– Returns a file pointer (i.e., File *)
– Takes a file path (e.g. /temp/inputfile)

– Takes a mode: (r, w, a, r+, w+, a+) 

Creating a file pointer with
fopen



Week 9 6

• Mode determines what you can do with
the file 
– Read: r

– Write: w (Creates new file if non exists)

– Append: a (Creates new file if none exists)

– Read and Write: r+

– Read and Write: w+ (Zeros the file if one exists creates
if it does not.)

– Read and append: a+ (Creates new file if none exits;

reads from beginning but appends to end.) 

Mode



Week 9 7

• Store the return value as a FILE *
• The variable is the argument to function

that read, write and append.

• It is also the argument to close().

File pointer



Week 9 8

Reading Files



Week 9 9

• Functions that read from a FILE *
– fgetc(FILE *fp)

• Returns character

– fgets(FILE *fp)
• Returns string

– fscanf(FILE *fp, “<ctrl>”, var…)
• Returns number of characters read

Reading



Week 9 10

• FILE * var

• Open the file.
– Mode = “r”

• Read the
characters.

• Close the file.

Example: print file to monitor



Week 9 11

• File operations are I/O operation so
unexpected things can happen.

• Always check for errors
– The fopen function returns NULL when it

fails

– The fclose function returns EOF when it
fails

Error checking



Week 9 12

• Check that the file
was opened.
– Stop the program it

isn't

• Check that the file
was closed.
– Stop the program if it

isn't.

• Return 0 if program
succeeds

Improved example



Week 9 13

Writing Files



Week 9 14

• Functions that write to a FILE *
– fputc(char ch, FILE *fp)
– fputs(char *s, FILE *fp)
– fprintf(FILE *fp, “<ctrl>”, var…)

• Returns number of chars printed

• The character to read or write is passed in as a
parameter.

• The put and puts functions return EOF on error.

Writing



Week 9 15

• Create a FILE *
• Open the file

– Checking that it is open

• Put the char from the
terminal in the file
– Checking that we got a

character

• Close the file.
– Checking that it is

really closed

Example: type into file



Week 9 16

Reading and Writing Strings



Week 9 17

Strings



Week 9 18

Why use ASCII Files?

• Characters are primitive types that can
represented almost anything.
– Text files can be written by one program and

read by another that knows nothing of the first

– Unix provides pipes that send the standard
output of one file into the standard input of the
next

– Using pipes you can perform complex
processing using small simple programs.


	UNIX Commands
	Commands
	Command I/O
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

