Week 9 Lecture 3

Binary Files

Week 9



Reading and Writing Binary Files

Week 9 2



Binary Files

* It Is possible to write the contents of
memory directly to a file.

— The bits need to be interpreted on input

* Possible to write out content like
Images.

Week 9



Binary set with mode

* Add b to normal modes
— Read in binary: rb
— Write in binary: wb
— Append in binary: ab
— Update in binary: r+b

Week 9



ASCII vs Binary Files

* ASCII files represent everything as a
sequence of characters

— We can print the contents of an ASCII file on
the screen.

— ASCII needs character representation for line
control.

* Binary files are the bit values from memory.

— Printing to the screen produces nothing legible.

Week 9 5



Text vs Binary mode

* Newline
— Text writes '/n' as <cr><I|f>; binary writes as <cr>
* EOF

— Text files put EOF in the file; binary files use the file
size to determine end-of-file

* Numbers

— Numbers are stored as characters in text mode;
they are stored in binary in binary mode.

— Therefore binary files must be read in binary.

Week 9 6



Write Records with fwrite

* fwrite(const void *record, int size,
int n_recs, FILE *fp);

— record: pointer to a record to write
— Size: size of the record to write

— N_recs: number of records to write
— fp: file pointer to file to write

* The records are written starting from the current
location of the file pointer.

Week 9



Write Example

Declare FILE *

Open file append
binary

Write a record

— Appended to end
because of mode

Close and return

int add(attend rec ar)

{

FILE *fptr = NULL;

// Open file for append
fptr = fopen(DB_FILE, "ab");
if (fptr == NULL) {
return FALSE;
}

// Write record at end of file
fwrite(&ar, sizeof(attend rec), 1, fptr);

// Close file
fclose(fptr);
return TRUE;

Week 9 8



Read Records with fread

* fread(const void *record, int size,
int n_recs, FILE *fp);

— record: pointer to a record to write
— Size: size of the record to write

— N_recs: number of records to write
— fp: file pointer to file to write

* The records are read starting from the current
location of the file pointer.

Week 9



Read Example

void list()

° Open ﬁle ' FILE *fptr = NULL;

attend _rec r;

° Whlle record size_t records_read = 0;

fptr = fopen(DB_FILE, "rb");
read if (fptr == NULL) {

fprintf(stderr, "%s: unable to open file\n", DB_FILE);
return;

— Print record |

— Read next printf_attend_header();
records _read = fread(&r, rec size, 1, fptr);
while (records_read == 1) {
* Close file printf_attend(r);

records_read = fread(&r, rec_size, 1, fptr);

}
printf("\n");
fclose(fptr);

Week 9 10



Read Detail

* fread parameters
— Pointer to a record r
— Size of record pointed to
— Number of records requested

— File pointer
* fread returns the number of records read.

* Print then read until no record is read
— L.e., records_read < Number of records requested
records read = fread(&r, rec _size, 1, fptr);
hile (records read == 1) {
printf_attend(r);
records _read = fread(&r, rec_size, 1, fptr);

}

Week 9

11



Moving with fseek

* fseek(FILE *fp, int offset, int start);

— fp: The file pointer whose index we are changing
— offset: how far into that file we are moving

— start: where we start counting offset
* SEEK_SET: beginning of file
* SEEK_CUR: Current position of file pointer

* fseek(fp, sizeof(rec), SEEK_SET);

— Skips one “rec”;

Week 9

12



Seck Example

int modify(attend rec ar)

find_index() returns
position of record

Open file for update (r+)
fseek() moves to that
position

— Returns negative if not found
fwrite() writes at that
position

— Overwrites current contents

Close whether found or not

{

FILE *fptr = NULL;
size_t record pos = 0;

record_pos = find_index(ar.sno);

fptr = fopen(DB_FILE, "r+b");

if (fptr == NULL) {
printf("%s: File open failed\n", DB _FILE);
return FALSE;

}

if (record pos >= 0) {
fseek(fptr, record pos * rec_size, SEEK_SET);
fwrite(&ar, rec_size, 1, fptr);
fclose(fptr);
return TRUE;
else {
fclose(fptr);
return FALSE;




Find Index 1n File
int find_1index(int sno)
* Count the number of GG
records before end- S ] o

int records_seen = 0;

Of_ﬁle fptr = fopen(DB_FILE, "rb");
if (fptr == NULL) {
_ printf("%s: File open failed\n", DB_FILE);
Return number AR
. }
counted 1f found
records_read = fread(&r, rec_size, 1, fptr);
: while (records read == 1) {
— Return -1 i1f not L (sho o= 1Ten0) {
fclose(fptr);
fk)llIl(i. return records_seen;

}

records read = fread(&r, rec_size, 1, fptr);
records_seen++;

}
fclose(fptr);
return -1;




Seek Details

* fseek() parameters
— File pointer
— File position
— Where to start
* SEEK SET starts at beginning

fseek(fptr, record pos, SEEK SET);
fwrite(&ar, sizeof(struct attendance rec), 1, fptr);

fclose(fptr);
return TRUE;

Week 9 15



Database Function

Add: add a record to the end of the file

— Seek to end of file; write a record

List: display existing records

— Seek to beginning of file; read and display records until end of file
Modify: change a particular record

— Read records until correct one found; modify record; seek back
one record; write modified record

Delete: remove a particular record

— Read records writing into temporary file, skipping record to be
deleted; rename temporary file to database file.

Week 9 16



Tips

The file pointer 1s set to beginning of file in “w”
and “r’ modes

The file pointer 1s set to the end of the file in “a”
mode

The fread and fwrite function move the pointer the
size of one record

— They read or write the record at the current pointer

On closing the file pointer 1s deactivated

Week 9 17



Binary Write

#include <stdio.h>

int main(int argc, char *argv[] )

{

FILE *fp;
char another = 'Y';
struct emp

char name[40];
int age;
float bs;

};

struct emp e;
fp = fopen("EMP.DAT", "wb");

if (fp =— NULL) {
puts ("Cannot open file");
return 1;

}

while (another == 'Y') {
printf("\nEnter name, age and basic salary: ");
scanf("%s %d %f\n", e.name, &e.age, &e.bs);
fwrite(&e, sizeof(e), 1, fp);
printf("Add another record (Y/N) ");
fflush(stdin);
another = getchar();

}
fclose(fp);
return 0;

Week 9

18



Binary Read

#include <stdio.h>
int main(int argc, char *argv[])
{
FILE *fp ;
struct emp
{
char name[40];
int age;
float bs;
};

struct emp e;

fp = fopen("EMP.DAT", "rb");

if (fp == NULL) {
puts("Cannot open file");
return 1;

}

while (fread(&e, sizeof(e), 1, fp ) == 1) {
printf("%s %d %f\n", e.name, e.age, e.bs);

}
fclose (fp);

Week 9



	UNIX Commands
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

