
Week 10 Lecture 2

Compilation and Make

Week 10 2

Compilation

● We use gcc to compile.

– Gnu open source

● Here it combines

– Preprocessing

– Compilation

– Assembly

– Linking

Week 10 3

Hello.c

● Preprocessor

● C

Week 10 4

Preprocessing

● C is unusual in that it include a preprocessor.
– The preprocessor commands start with a '#'

● The commands change the text of the file before compilation

– #include <stdio.h> is a preprocessor command.

– It is replaced with the content of the file stdio.h
● Contains the function templates for the standard C I/O files.

– Modern languages do not require functions templates to
appear before their use

● The compiler looks for all of the functions before compiling

● #include is not found in modern languages.

Week 10 5

Pre-processing 2

● Another pre-processor directive “#define”
– This directive replaces the name being defined with

the string following it.

– For example, #define THREE 3 will replace every
string in the file with the numeral 3.

– By conventions all elements defined this way are
printed in all-caps

– Modern languages do no have macros because
macros can be hard to debug

Week 10 6

Preprocess output: hello.i

● Defines variables

● Defines functions

Week 10 7

Compiling

● Compiling transforms C to assembly language

● Assembly language is a symbolic representation of
machine language.

● Modern languages translate
– directly into machine language because compilers optimize

machine language better than humans.

– Into an intermediate interpreted language so the compiled
code can run on many machines.

● An interpreter is a virtual machine
– I.e., a simulated machine

Week 10 8

Assembly Language “hello”

● Items starting with '.'
instruct assembler

● Items ending with ':'
are labels

● Instructions are
pushq, movq, subq,
movl, movq, call, and
leave

Week 10 9

Assembly

● The assembler translates the assembly
language to machine language.

● Output is a very long string of binary digits.
– Some of these commands refer to programs in

other files.

● It is difficult to display binary files.

Week 10 10

Linker/Loader

● The linker adds the code from libraries so that
the program can run.

● The loader instructs the computer on how to put
the binary files in memory so the program will
run.

Week 10 11

Where are the Libraries

● cpp -v produces a list
of directories
searched.
– Must specify libraries

for files specified by
quotation marks.

– Standard libraries are
surrounded by “< >”

Week 10 12

Why this is useful

● Files that have been compiled need not be
compiled again unless they change.

● Compilation takes a long time, so not compiling
files that do not change can save hours of
compile time.

● However, keeping track of when files have been
compiled is complicated.

Week 10 13

Make

● Make is a program that defines how to build a
programs.
– Target dates are checked and actions taken only if

they are out of date.

● Also allows multiple different activities on the
same program.

Week 10 14

Make example

● Targets
– Can be made

● Dependencies
– Need to be up to date

● Actions
– Indicate how to make

targets up to date

Week 10 15

Make example 2

● make = make all
● make clean:

removes .o and
executable

● Touch updates file
date

● Forcing new make

● Not made otherwise

Week 10 16

Make Syntax

● Target separated from
dependencies by ':'

● Actions on new lines
which must start with
a tab character
– N.B. A common error

is to put spaces in
instead of a tab. They
look the same.

dep1: [dep-1 dep-2 ...]

<tab>[command1

<tab>command2

<tab>......]

Week 10 17

Make for Calculator (variables)

Week 10 18

Make for Calculator (all)

Week 10 19

Make for Calculator (clean)

Week 10 20

Make for Calculator (calc)

Week 10 21

Make for Calculator (test)

Week 10 22

Make for Calculator (.o)

Week 10 23

Make for Calculator (Dependency)

Week 10 24

Gcc Tutorial

● https://www3.ntu.edu.sg/home/ehchua/program
ming/cpp/gcc_make.html

https://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html
https://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html

	UNIX Commands
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

