
Week 10 Lecture 2

Compilation and Make
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Compilation

● We use gcc to compile.

– Gnu open source

● Here it combines

– Preprocessing

– Compilation

– Assembly

– Linking
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Hello.c

● Preprocessor

● C
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Preprocessing

● C is unusual in that it include a preprocessor.
– The preprocessor commands start with a '#'

● The commands change the text of the file before compilation

– #include <stdio.h> is a preprocessor command.

– It is replaced with the content of the file stdio.h
● Contains the function templates for the standard C I/O files.

– Modern languages do not require functions templates to
appear before their use

● The compiler looks for all of the functions before compiling

● #include is not found in modern languages.
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Pre-processing 2

● Another pre-processor directive “#define”
– This directive replaces the name being defined with

the string following it.

– For example, #define THREE 3 will replace every
string in the file with the numeral 3.

– By conventions all elements defined this way are
printed in all-caps

– Modern languages do no have macros because
macros can be hard to debug
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Preprocess output: hello.i

● Defines variables

● Defines functions
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Compiling

● Compiling transforms C to assembly language

● Assembly language is a symbolic representation of
machine language.

● Modern languages translate
– directly into machine language because compilers optimize

machine language better than humans.

– Into an intermediate interpreted language so the compiled
code can run on many machines.

● An interpreter is a virtual machine
– I.e., a simulated machine
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Assembly Language “hello”

● Items starting with '.'
instruct assembler

● Items ending with ':'
are labels

● Instructions are
pushq, movq, subq,
movl, movq, call, and
leave
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Assembly

● The assembler translates the assembly
language to machine language.

● Output is a very long string of binary digits.
– Some of these commands refer to programs in

other files.

● It is difficult to display binary files.
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Linker/Loader

● The linker adds the code from libraries so that
the program can run.

● The loader instructs the computer on how to put
the binary files in memory so the program will
run.
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Where are the Libraries

● cpp -v produces a list
of directories
searched.
– Must specify libraries

for files specified by
quotation marks.

– Standard libraries are
surrounded by “< >”
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Why this is useful

● Files that have been compiled need not be
compiled again unless they change.

● Compilation takes a long time, so not compiling
files that do not change can save hours of
compile time.

● However, keeping track of when files have been
compiled is complicated.
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Make

● Make is a program that defines how to build a
programs.
– Target dates are checked and actions taken only if

they are out of date.

● Also allows multiple different activities on the
same program.
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Make example

● Targets
– Can be made

● Dependencies
– Need to be up to date

● Actions
– Indicate how to make

targets up to date
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Make example 2

● make = make all
● make clean:

removes .o and
executable

● Touch updates file
date

● Forcing new make

● Not made otherwise
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Make Syntax

● Target separated from
dependencies by ':'

● Actions on new lines
which must start with
a tab character
– N.B. A common error

is to put spaces in
instead of a tab. They
look the same.

dep1: [dep-1 dep-2 ...]

<tab>[command1

<tab>command2

<tab>......]
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Make for Calculator (variables)



Week 10 18

Make for Calculator (all)
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Make for Calculator (clean)
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Make for Calculator (calc)
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Make for Calculator (test)
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Make for Calculator (.o)
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Make for Calculator (Dependency)
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Gcc Tutorial

● https://www3.ntu.edu.sg/home/ehchua/program
ming/cpp/gcc_make.html
 

https://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html
https://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html
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